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113. Method of Least Work.—The so-called theorem or prin-

ciple of
'

' Least Work" is closely related to the subject of elastic

deflections just considered in its availability for furnishing equa-

tions of condition in addition to those of a purely statical char-

acter in cases where indetermination would result without them.
This principle of least work is expressed in the simple state-

ment that when any structure supports external loading the

work performed in producing elastic deformation of all the mem-
bers will be the least possible. Although this principle may not
be susceptible of a complete and general demonstration, it may
be shown to hold true in many cases if not all. The hypothesis

is most reasonable and furnishes elegant solutions in many useful

problems.

The application of this principle requires the determination

of expressions for the work performed in the elastic lengthening

and shortening of pieces subjected either to tension or compres-

sion, and for the work performed in the elastic bending of beams
carrying loads at right angles to their axes. Both of these ex-

pressions can be very simply found.

Let it be supposed that a piece of material whose length is L
and the area of whose cross-section is A is either stretched or

compressed by the weight or load 5 applied §0 as to increase

gradually from zero to its full value. The elastic change of

SL
length will be , E being the coefficient of elasticity. The

average force acting will be ^5, hence the work performed in

producing the strain will be

-^ (48)
2 AE

It will generally be best, although not necessary, to take L
in inches. The expression (48) appHes either to tension or com-

pression precisely as it stands.

To obtain the expression for the work performed by the

stresses in a beam bent by loads acting at right angles to its axis,

a differential length {dL) of the beam is considered at any normal

section in which the bending moment is M, the total length being

L. Let / be the moment of inertia of the normal section. A,
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about an axis passing through the centre of gravity of the latter,

and let k be the intensity of stress (usually the stress per square

inch) at any poiat distant d from the axis about which / is taken.

The elastic change produced in the indefinitely short length dL
k

when the iatensity k exists is -p.dL, If dA is an indefinitely

small portion of the normal section, the average force or stress,

either of tension or compression, acting through the small elastic

change of length just given, can be written b,y the aid of equa-

tion (5) as

Lk.dA=^-f.dA (49)
2 21

Hence the work performed in any normal section of the member,

for which M remains unchanged, will be, since
J
k.dA .d=M,

^ kd.dA.dL =^dL (50)/ >IE 2EI

The work performed throughout the entire piece will then be

/
Each of the expressions (48) and (51) belongs to a single piece

or member of the structure. The total work performed in all

the pieces subjected either to direct stress or to bending, and

which, according to the principle of least work, must be a mini-

mum, is found by taking the summation of the two preceding

expressions

:

In making an application of equation (52) it is to be remembered
that 5 is the direct stress of tension or compression in any mem-
ber, and that M is the general value of the bending moment in

any bent member expressed in terms of the length L.

114. Application of Method of Least Work to General Problem,
—^The problem which generally presents itself in the use of equa-

tion (52) is the finding of an equation which expresses the condi-
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tion that the work expended in producing elastic deformation

shall be a minimum, some particular stress in the structure or

some external load or force being the variable. If t represent

that variable, then the desired equation of condition will be found
simply by placing the first differential coefficient of ^ in equation

(52) equal to zero:

de I / Y^5 dS,.
,

r^ rM dM,j\ , .

dt
= E{ZAdt'''^'-AjT^'^^)=''- ^53^

The solution of equation (53) will give a value of t which will

make the work performed as expressed inequation (52) a mini-

mum. This method is not a difficult one to employ in such cases

as those of drawbridges and stiffened suspension bridges. In

the latter case particularly it is of great practical value.

115. Application of Method of Least Work to Trussed Beam.

—The method of least work may be illustrated by the applica-

tion of the preceding equations to the simple truss shown in

Fig. 32. The pieces BC and GD are supposed to be of yellow-pine

timber, the former 10 inches by 14 inches (vertical) in section

and the latter 8 inches by 10 inches, while each of the pieces

BD and DC are two if-inch round steel bars. The coefficient

of elasticity E will be taken at 1,000,000 pounds for the timber

and 28,000,000 for the steel. The length of BC is 360 inches;

GD 96 inches; jBZ^ =96X2.13 = 204.5 inches.

tan a = 1.875 ^i^d sec = 2.13.

The weight W resting at G is 20,000 pounds. A part of this

weight is carried by BC as a simple timber beam, while the re-

mainder of the load will be carried on the triangular frame BCD
acting as a truss, the elastic deflection of the latter throwing a
part of the load on BC acting as a beam. According to the

principle of least work the division of the load will be such as

to make the work performed in straining the different members
of the system a minimum.

That part of W which rests on BC as a simple beam may be

represented by W^, while W^ represents the remaining portion

carried by the triangular frame. As G is at the centre of the

span, the beam reaction at either 5 or C is ^W^. Hence the
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general value of the bending moment in either half of the beam
at any distance x from either i? or C is

M = W^x. Hence MHL = \W,^x'dx.

As there is but one
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Hence
de = . 000,00'],46W^ — .000,i^26{W— W^ =o. . . (56)dW

2

The solution of this equation gives

W^ = .89314^ = 19,660 pounds.

W,^ 340 "

It is interesting to observe that the first term of the second

member of equation (56) is the deflection of the point of applica-

tion of W^ as a point in the frame, while the second term is the

deflection of the point of application of W^ considered as a point

of the beam. In other words, the condition resulting from the

application of the principle of least work is equivalent to mak-
ing the elastic deflections by W^ and 11^2 equal. Indeed equation

(53) expresses the equivalence of deflections whenever the fea-

tures of the problem are such as to involve concurrent deflections

of two different parts of the structure.

116. Removal of Indetermination by Methods of Least Work
and Deflection.— The indetermination existing in connection

with the computations for such trusses as those shown in Fig. 22

and Fig. 23 can be removed by finding equations of condition

by the aid of the method of least work or of deflections. It is

evident that the component systems of bracing of which such

trusses are composed must all deflect equally. Hence expres-

sions may be found for the deflections of those component trusses,

each under its own load. Since these deflections must be equal,

equations of condition at once result. A sufficient number of

such equations, taken with those required by statical equilib-

rium, can be found to solve completely the problem. Such
methods, however, are laborious, and the ordinary assumption

of each system carrying wholly the loads resting at its panel-

points is sufficiently near for all ordinary purposes.

The method of least work can be very conveniently used for

the solution of a great number of simple problems, like that which
requires the determination of the four reactions under the four

legs of a table, carrying a single weight or a number of weights,

and many others of the same character.
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117. The Arched Rib, of both Steel and Masonry.—^During

the past ten or fifteen years the type of bridge structure called

the arched rib has come into much use, and its merits insure for

it a wider application in the future. It partakes somewhat of

the nature of both truss and arch; or it may be considered a

curved beam or girder. The ordinary beam or truss when placed

in a horizontal position and loaded vertically yields only vertical

reactions. Under the same conditions, however, the arched rib

will produce both vertical and horizontal reactions, and the latter

must either be resisted by abutments of sufficient mass, or by

a tie-rod, usually horizontal, connecting the springing points of

the rib.

The arched rib may be built solid, as was done in the early

days of bridge-building in this country when engineers like

Palmer, Burr, and Wemwag introduced timber arches in com-

bination with their wooden trusses, or as a curved plate girder,

one of the most prominent examples of which is the Washington

Bridge across the Harlem River in the city of New York; or,

again, as a braced frame or curved truss, like the 800 feet arched

rib carrying the roadway traffic and trolley cars across the

Niagara gorge, or like those used in such great railroad train-

sheds as the Grand Central Station, New York, the Pennsylvania

stations at Jersey City and Philadelphia, and the Philadelphia

and Reading station in Philadelphia. Those are all admirable

examples of steel arched ribs, and they are built to sustain not

only vertical loads but, in the case of station roofs, the normal

or horizontal wind pressures.

Within a few years, less than ten, another type of arched

rib has been brought into use and promises to be one of the most
142
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beautiful as well as the most substantial applications of this type

of structure; that is, the arched rib of combined steel and con-

crete. Many examples of this type of structure already exist

both in this country and in Europe, probably the most promi-

nent of which in this country is that at Topeka, Kansas, across

the Kansas River.

Fig. 35.

The characteristic feature of this type of structure, so far as the

stresses developed in it are concerned, is the thrust throughout

its length, more or less nearly parallel to its axis, which is com-

bined with the bending moments and shears similar to those

found in ordinary bridge-trusses. This thrust is the arch char-

acteristic and differentiates it in a measure from the ordinary

bridge-truss, while the bending moments and shears to which

it is subjected differentiate it, on the other hand, from the pure

arch type or a series of blocks in which thrust only exists. The
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thrust, bending moments, and shears in arched ribs are all

affected by certain principal features of design. Those features

are either fixedness of the ends of the ribs or the presence of pin-

joints at those ends or at the crown. Fig. 33 represents an

arched rib with its ends D and F supposed to be rigidly fixed in

masonry or by other effective means.

118. Arched Rib with Ends Fixed.—The railroad steel arched

bridge at St. Louis, built by Captain Eads between 1868 and

1874, is a structure of this character. The three spans (two

each 537 feet 3 inches and one 552 feet 6 inches in length from

centre to centre of piers) consist of ribs the main members of

which are composed of chrome steel. It was a structure of un-

precedented span when it was built, and constituted one of the

boldest pieces of engineering in its day. The chords of the ribs

are tubes made of steel staves, and their ends are rigidly anchored

to the masonry piers on which they rest. It is exceedingly

difficult, indeed impossible, to fix rigidly the ends of such a

structure, and observations in this particular instance have

shown that the extremities of the ribs are not truly fixed, for the

piers themselves yield a little, giving elastic motion under some

conditions of loading.

119. Arched Rib with Ends Jointed.—The rib shown in Fig.

34 is different from the preceding in that pin-joints are supplied

at each end, so that the rib may experience elastic distortion or

strain by small rotations about the pins at A and B. In the

computations for such a design it is assumed that the ends of the

rib may freely change their inclination at those points. As a

matter of fact the friction is so great, even if no corrosion exists,

as to prevent motion, but the presence of the pins makes no bend-

ing moment possible at the end joints, and the failure to move
freely probably produces no serious effect upon the stresses in

the ribs. The presence of these pin-joints simplifies the com-

putations of stresses and renders them better defined, so that

there is less doubt as to the actual condition of stress under a

given load than in the type shown in Fig. 33 with ends fixed

more or less stiffly. In Fig. 34, if the horizontal force H exerted

by the ends of the rib against the points of support is known,

the remaining stresses in the structure can readily be computed

;
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but neither in Fig. 34 nor in Fig. t,;^ are statical equations suffi-

cient for the determination of stresses. Equations of condition,

depending upon the elastic properties of the material, are re-

quired before solutions of the problems arising can be made.

120. Arched Rib with Crown and Ends Jointed.—The rib

shown in Fig. 35 possesses one characteristic radically different

from any found in the ribs of Figs. t,3 and 34, in that it is three-

jointed, one pin-joint being at the crown and one at each end.

So far as the conditions of stress are concerned, this is the sim-

plest rib of all. Since there is a pin-joint at the crown as well

as at the ends, the bending moments must be zero at each of those

three points whatever may be the condition of loading. The

point of application of the force or thrust at the crown, therefore,

is always known, as well as the points of application at the ends

of the joints. As will presently be seen, this condition makes

equations of statical equilibrium sufficient for the determination

of all stresses in the rib, and no equations depending upon the

elastic properties of the material are required. The stresses in

this class of ribs, therefore, are more easily determined than in

the other two, and they are better defined. These qualities

have insured for it a somewhat more popular position than

either of the other two classes. The ribs of the great train-sheds

of the Pennsylvania and Reading railroads in Jersey City and

in Philadelphia belong to this class, while those of the Grand

Central Station at New York City belong to the class shown in

Fig. 34, as does the arched rib across the Niagara gorge, to which

reference has already been made.

121. Relative Stiffness of Arch Ribs.—Obviously the three-

hinged ribs are less stiff than the two-hinged ribs or those with

fixed ends. This is a matter of less consequence for station

roofs than for structures carrying railroad loads. The joints of

the two-hinged rib being at the ends of the structure, there is

but little difference in stiffness between that class of ribs and

those with ends fixed. Indeed the difference is so slight, and

the uncertainty as to the degree of fixedness of the fixed ends

of the rib is so great, that the latter type of rib possesses no real

advantage over that with hinged ends.
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122. General Conditions of Analysis of Arched Ribs.—In each

of the three types of arched ribs shown in Figs. 33, 34, and 35

it is supposed that all external forces act in the vertical planes

which contain the centre lines of the various members of the rib.

There are, therefore, the three conditions of statical equilibrium

expressed by the three equations (35), (36), and (37). In prac-

tically all cases, except those of arched ribs employed in roof

construction, all the external loads are vertical. In such cases

the equations of statical equilibrium of the entire structure may
be reduced to two only, viz., equations (36) and (37). These

features of the problems connected with the design of arched

ribs will always make necessary, except in the case of the three-

hinged rib (Fig. 35), equations of condition depending upon the

elastic properties of the structure.

The rib represented by Fig. 33 is supposed to have its ends

so fixed that the inclinations of the centre line at F and D will

never change whatever may be the loading or the variation of

temperature. This requires the application at each of those

points of a couple whose moment varies in value, but which is

always equal and opposite to the bending moment at the same

point produced by the loads imposed on the rib. It is also to

be observed that the loads resting upon the rib are not divided

between the points of support F and D in accordance with the

law of the lever, since the conditions of fixedness at the ends are

equivalent to continuity. There are then to be found, as acting

external to the rib, the two vertical reactions and the two mo-

ments at F and D, as well as the horizontal thrust exerted at

the ends of the structure, which is sometimes resisted by
the tie-rod, making five unknown quantities. Inasmuch as all

external loading is supposed to be vertical, equations (36) and

(37) are the only statical equations available, and three others,

depending upon the elastic properties of the structure, must be

supplied in order to obtain the total of five equations of con-

dition to determine the five unknown quantities. Inasmuch

as the end inclinations remain unchanged, the total extension

or compression of the material at any given constant distance

from the axis of the rib taken between the two end sections F
and D must be equal to zero. Similarly, whatever may be the
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amount or condition of loading, the vertical and horizontal de-

flections of either of the ends F or D in relation to the other

must be zero, since no relative motion between these two points

can take place. It is not necessary in these lectures to give the

demonstration of the equations which express the three pre-

ceding elastic conditions, but if M is the general value of the

bending moment for any point of the rib, and if x and y are the

horizontal and vertical coordinates of the centre line of the rib,

taking the central point of the section at either F or D as an
origin, those equations, taken in the order in which the elastic

conditions have been named, will be the following, in which n
represents a short length of rib within which the bending moment
ill is supposed to remain unchanged.

) nM = o; ) nMx = o; ) nMy=o. . (57)
D D D

The second and third of these equations express the condition

that the vertical and horizontal deflections respectively of the

two ends in reference to each other shall be zero. The condi-

tions expressed by equation (57) are constantly used in engi-

neering practice to determine the bending moments and stresses

which exist in the arched rib with fixed ends. The graphical

method is ordinarily used for that purpose, as its employment
is a comparatively simple procedure for a rib whose curvature is

any whatever.

If the rib has hinged joints at the ends, as in Fig. 34, obviously

there can be no bending moment at either of those two points,

and hence the two equations of condition which were required

in connection with Fig. 33 to determine them will not be needed.

There is, therefore, no restriction as to the angle of inclination of

the centre line of the rib at those two points. Again, it is obvious

that either end A ov B may have vertical movement, i.e., deflec-

tion in reference to the other, without affecting the condition

of stress in any member of the rib ; but it is equally obvious that

neither A nor B can be moved horizontally, i.e., deflected in

reference to the other, without producing bending in the rib and
developing stresses in the various members. The unknown
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quantities in this case are, therefore, only the horizontal thrust

H exerted at the two springing points A and B, and the two
vertical reactions, making a total of three unknown quantities,

equations for two of which will be given by equations (36) and

(37). The other equation required is the third expression in

equation (57), expressing the condition that the horizontal deflec-

tion of either of the points A or B 'm respect to the other is zero,

since the span AB is, supposed to remain unchanged. By the

application of the graphical method to this case, as to the pre-

ceding, the employment of equations (36), (37), and (58) will

afford an easy and quick determination of the three unknown
quantities, whatever may be the curvature of the rib.

B

nMy=o (58)

If the reactions and horizontal thrust H are found, stresses in

every member may readily be computed and the complete design

made.

If the arch is three-hinged, as in Fig. 35, the condition that

the bending moment must be zero at the crown C under all con-

ditions of loading gives a third statical equation independent of

the elastic properties of the structure which, in connection with

equations (36) and (37), give three equations of condition suffi-

cient to determine the two vertical reactions and the horizontal

thrust H. In this case, as has already been stated, no elastic

equations of condition are required.

The determination of the end reactions, bending moments,

and horizontal thrust H, in these various cases, is all that is

necessary in order to compute with ease and immediately the

stresses in every member of the rib. These computations are

obviously the final numerical work required for the complete

design of the structure. These procedures are always followed,

and in precisely the manner indicated, in the design of arched ribs

by civil engineers, whether the rib be articulated, i.e., with open

bracing, or with a solid plate web, like those of the Washington

Bridge across the Harlem River.
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123. Beams of Combined Steel and Concrete.*—A reference has

already been made to a class of beams and arches recently come
into use and now quite widely employed, composed of steel and
concrete, the former being completely surrounded by and im-

bedded in the latter. These composite beams are very exten-

sively used in the floors of fire-proof buildings as well as for other

purposes. Arches of combined concrete and steel were probably

first built in Germany and but a comparatively few years ago.

During the past ten years they have been largely introduced

into this country, and many such structures have not only been

designed but built. The most prominent design of arches of

combined concrete and steel are those of the proposed memorial

bridge across the Potomac River at Washington, for which a

first prize was awarded as the result of a national conipetition

in the early part of 1900. So far as the bending or flexure of

these composite beams and arches is concerned, the theory is

identically the same for both, the formulae for each of which are

given below. In order to express these formulas the following

notation will be needed

:

P is the thrust along the arch determined by the methods
explained in the consideration of arched ribs.

/ is the distance of the line of the thrust P from the axis of

the arched rib.

E^ and E^ are coefficients of elasticity for the two materials.

A^ and A^ are areas of normal section of the two materials.

/j and /j are moments of inertia of ^4^ and A^ about the neutral

axes of the composite beam or arch sections.

* For a complete and detailed statement of this whole subject, including design

work, reference should be made to the author's "Elasticity and Resistance of Materials."

149
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k^ and ^2 ^i"® intensities of bending stress in the extreme

fibres of the two materials.

h^ and h^ are total depths of the two materials.

d^ and d^ are distances from the neutral axes to farthest fibres

of the two materials; distances to other extreme fibres would

be {h^ — d^ and {h^ — d^)

.

W^ and W^ are loads, either distributed or concentrated, car-

ried by the two portions.

W = W^ + W.^ is total load on the beam or arch.

^1 = -^ and ^2 = ^; ••?i + ^2 = i; ^ = ^--

The application of the theory of flexure to the case of a beam
or arch of two different materials, steel and concrete in this case,

will give the following results

:

M = PI; hence M,=q,Pl and M^ = q,Pl. . . (59)

^^=#=£7:w2-
^'°^

q=^= £2^2
(6,)W EJ^ + EJ

P Md y ,. .

+ r , .r •
' (62)

^1,-1-^2 /i + ^/;

P MJ

These formulas exhibit some of the main features of the

analysis which must be used in designing either beams or arches

of combined steel and concrete. In the use of these equations

care must be taken to give the proper sign to the bending moment
M. They obviously apply to the combination of any two mate-

rials, although at the present time the only two used in such com-

posite structures are steel and concrete. If the subscript i

belongs to the concrete portion, and the subscript 2 to the steel

portion, there may be taken £j^ = 1,500,000 to 3,000,000 and

£^2 = 30)Ooo>ooo- Hence ^ = 20 to 10.

The purpose of introducing the steel into the concrete is to

make available in the composite structure the high tensile resist-



BEAMS OF COMBINED STEEL AND CONCRETE. 153

ance of that metal. A very small steel cross-section is sufficient

to satisfactorily accomplish that purpose. The percentage of the

total composite section represented by the steel will vary some-

what with the dimensions of the structure and the mode of using

the material; it will usually range from 0.75 per cent to 1.5 per

cent of the total section. The large mass of concrete in which

the steel should be completely imbedded serves not only to afford

a large portion of the compressive resistance required in both

arches and beams, but also to preserve the steel effectively from

corrosion. Many experiments have shown that it requires but a

small per cent of steel section to give great tensile resistance to

the composite mass.
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124. The Masonry Arch.—The masonry arch is so old that

its origin is lost in antiquity, but its complete theory ha.s been

developed with that of other bridge structures only within the

latest period. It is only possible here to give some of the main

features of that theory and a few of the fundamental ideas on

which it is based. It is customary among engineers to regard

the masonry arch as an assemblage of blocks finely cut to accu-

rate dimensions, so that the assumption of either a uniform or

uniformly varying pressure in the surface of contact between

any two may be at least sufficiently near the truth for all practical

purposes. Although care is taken to make joints between ring-

stones or voussoirs completely cemented or filled with a rich

cement mortar, it is usually the implicit assumption that such

joints do not resist tension. As a matter of fact many arch

joints are capable of resisting considerable tension, but, in conse-

quence of settlement or shrinkage, cracks in them that may be

almost or quite imperceptible frequently prevent complete con-

tinuity. It is, therefore, considered judicious to determine the

stability of the ordinary masonry arch on the assumption that

the joints do not resist tension.

In these observations it is not intended to convey the impres-

sion that no analysts treat the ordinary arch as a continuous

elastic masonry mass, like the composite arches of steel and con-

crete. Although much may be said in favor of such treatment

for all arches, it is believed that prolonged experience with arch

structures makes it advisable to neglect any small capacity of

resistance to tension which an ordinary cut-stone masonry joint

may possess, in the interests of reasonable security.

The ring-stones or voussoirs of an arch are usually cut to form

circular or elliptic curves, or to lines which do not differ sensibly

154
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from those curves. The arch-ring may make a complete semi-

circle, as in the old Roman arches, or a segment of a semicircle

;

or the stones may be arranged to make a pointed arch, like the'

Gothic ; or, again, a complete semiellipse may be formed, or pos-

sibly a segment of that curve. When a complete semiellipse

or complete semicircle is formed, the arches are said to be full-

centred, and in those cases they spring from a horizontal joint

at each end. On the other hand, segmental arches spring from
inclined joints at each end called skew-backs.

125. Old and New Theories of the Arch.—In the older theories

of the arch, considered as a series of blocks simply abutting against

each other, the resultant loading on each block was assumed to

be vertical. In the modern theories, on the other hand, the

resultant loading on any block is taken precisely as it is, either

vertical or inclined, as the case may be. Many arches are loaded

with earth over their arch-rings. This earth loading produces

a horizontal pressure against each of the stones, as well as a

vertical loading due to its own weight. In such cases it is neces-

sary to recognize this horizontal or lateral pressure of the earth,

as it is called, as a part of the arch loading.

It is known from the theory of earth pressure that the amount
of that pressure per square foot or any other square Unit may vary

between rather wide limits, the upper of which is called the abut-

ting power of earth, and the latter the conjugate pressure due to

its own weight only. If w is the weight per cubic unit of earth

and X the depth considered, and if (p be the angle of repose of the

earth, the abutting power per squate unit will have the value

:

I -t- sin (p ,. sp=wx ,
—-, (04)

I — sm f

while the horizontal or conjugate pressure due to the weight of

earth only will be

:

- I — sin (f f^s
p' =wx .^ (05)

I -fsm (p

The use of these formulas will be illustrated by actual arch com-

putations.
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Fig. 36 is supposed to show a set of ring-stones for an arch of

any curvature whatever. The joints LM and ON represent

the skew-backs or springing joints, while R and R^ represent the

supporting forces or reactions with centres of action at a' and a^.

Fig. 36.

The ring is divided into blocks or pieces by the joints at a, b, c, d,

and e, the resultant loading or force on each block being given by
the lines with arrow-heads and numbered i, 2, 3, 4, 5, 6, and 7.

Fig. 37 represents a force polygon constructed in the ordinary

manner by laying off carefully to scale the two reactions R and R^,

together with the loads or forces numbered i to 7, inclusive.

By constructing the so-called polygonal frame in the ring-stones

of Fig. 36 in the usual manner with its lines or sides parallel to
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the radiating lines in Fig. 37, as shown by the broken lines, the

points a, b, c, etc., are found where the resultant forces cut each

joint. The line drawn through those points thus determined

is called the line of resistance of the arch. Obviously, if that line

of resistance be determined, the complete stability or instability

of the arch, as the case may be, will be established. Furthermore,

the complete determination of the force polygon in Fig. 37, and
the corresponding polygonal frame drawn in the arch-ring, con-

stitute all the computations involved in the design of an arch.

The thrust 7^ at the crown, shown both in Fig. 36 and Fig. 37,

is frequently horizontal, although not necessarily so ; its value

is shown by Fig. 37. In the older arch theories a principle

was enunciated called the "principle of least resistance." The
thrust Tg is a fundamental and so-called passive force. That is,

its magnitude depends not only upon its position, but also largely

upon the magnitude of the active forces which represent the

loading on the arch-ring. Under the principle of least resistance

it was laid down as a fundamental proposition, in making arch

computations, that this passive force T^ must be the least possi-

ble consistent with the stability of the structure. While this

provisional proposition answered its purpose well enough, there

are other clearer methods of procedure which are thoroughly

rational and involve the employment of no extraneous consider-

ations other than those attached to the determination of statical

equilibrium.

A scrutiny of the conditions existing in Fig. 36 will show that

if the external forces or loadings on the individual blocks of the

ring are given, four quantities are to be determined, viz., the

two reactions R and R^ and their lines of action. Inasmuch as

no elastic features of the structure are to be considered, there

are available for the determination of these four quantities the

three equations of equilibrium, equations (35), (36), and (37),

which are not sufficient for the purpose. If one line of action,

such as that oi R, be located by assuming its point of applica-

tion a', the three equations just named will be sufficient for the

determination of the remaining three equations ; and that is pre-

cisely the method employed. It is tentative, but perfectly prac-

ticable. If, instead of assuming one of the points of application
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of the reactions, we assume both of those points and construct

a trial polygonal frame, it will be necessary to use but two of the

three equations of statical equilibrium. For that purpose there

are employed equations (35) and (36), but in a graphical manner,

which will presently be illustrated.

126. Stress Conditions in the Arch-ring.—Before proceeding

to the construction of an actual line of resistance, a little consid-

eration must be given to the stress conditions in the arch-ring.

As the joints are considered capable of resisting no tension, the

dimensions of the arch-ring must be finally so proportioned that

pressure only will exist in each and every joint. If each centre

of pressure, as a, b, etc., in Fig. 36, is found in the middle third

of the joint, it is known from a very simple demonstration in

mechanics that no tension will ever exist in that joint, although

the pressure may be zero at one extremity and a maximum at

the other. This is the condition usually imposed in designing

an arch-ring to carry given dead or live loads. It is usually

specified that
'

' the line of resistance of the ring must lie in the

middle third." It must be borne in mind, however, that the

stability of the ring is perfectly consistent with the location of

the line of resistance outside of the limits of the middle third,

provided it is not so far outside as to induce crushing of the ring-

stones. Whenever that crushing begins the arch is in serious

danger and complete failure is likely to rCvSult.

127. Applications to an Actual Arch.—These principles will

be applied to the arch-ring shown in Fig. 38, in which the clear

span TU is 90 feet. The radius CO of the soffit (as the under

surface of the arch is called) is 50 feet, the ring being circular

and segmental. The uniform thickness of the ring shown at

the various joints is assumed at 4 feet as a trial valae. The load-

ing above the ring to the level of the line E'O is assumed to be

dry earth weighing, when well rammed in place, 100 pounds per

cubic foot. The depth of this earth filling at the crown n of the

arch is taken at 4 feet. The ring-stones are assumed to be of

granite or best quality of limestone, weighing 160 pounds per

cubic foot. The ' thickness or width of arch-ring of one foot is

assumed, as each foot in width is like every other foot, and the

loads are taken for that width of ring. The rectangle EJJ'E'
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is supposed to represent a moving load covering one half of the

span and averaging 500 pounds per linear foot; in other words,

averaging 500 pounds per square foot of upper surface projected

in the line E'O. The total length of the arch-ring, measured
on the soffit, is about 113 feet, and it is divided into ten equal

portions for the purpose of convenient computation. The radial

joints so located are as shown at de, fg, hk. From the points

where these joints cut the extrados (as the upper surface of the

arch-ring is called) vertical broken lines are erected, as shown
in Fig. 38.

K L M N O

C

Fig. 38.

The horizontal line drawn to the left from / gives the vertical

projection of that part of the extrados between d and /, and the

horizontal earth pressure on df will be precisely the same in

amount as that on the vertical projection of df, as just found.

In the same manner the horizontal earth pressure on that part of

the extrados between any two adjacent joints may be found.

The mid-depths of these vertical projections below the line E'O
are to be carefully measured by scale and then used for the values

of X in equations (64) and (65), which now become equations

(66) and (67), as the angle of repose (p is taken to correspond to

a slope of earth surface of i vertical on i^ horizontal.

^ = 3.51^:^ (66)

p' =o.2^'^wx (67)

The horizontal earth pressures thus found are as follows

:

7 _ ( 101,500 pounds; , _ ( 30,625 pounds;
'~

\ 8,700 " ^'-
\ 2,625 ''

h - i 59-500 "
/, _ J 9.800

^^"
( 5,100 - ^^-\ 840 "
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These quantities h^, etc., are found by multiplying the two inten-

sities p and p' by the vertical projections of the surface on which

they act. The larger values are found by equation (66) and

represent the abutting power of the earth, while the smaller values

are found by equation (67), and represent the horizontal or con-

jugate pressure of the earth due to its own weight only. The

actual horizontal earth pressure against the arch-ring may lie

anywhere between these limits.

The weights of the moving load, earth, and ring-stones between

each pair of vertical lines and radial joints shown in Fig. 38 are

next to be determined, and they are as follows

:

W^ = 27,300 pounds; W^=- 12,300 pounds;

^^2 = 27,900
'

^^7 = 15.550

1^3 = 24,500
"

1^3 = 19,500
"

1^4 = 21,300
"

1^9=19,400
"

1^, = 18,300
"

W^,, = 24,300
"

The centres of gravity of these various vertical forces are shown

in Fig. 38 at the points W.^, W^, etc. The triangles of forces shown

in that figure and composed, each one, of a vertical and horizontal

force as described, are laid down in actual position on the arch-

ring, as shown. All data are thus secured for completing the

force polygon and polygonal frame or line of resistance. It will

be assumed that the reactions R and R' cut the springing joints

at c and a, respectively, one third of the width of the joint from

the soffit, and it will further be assumed that b, the mid-point of

the joint at the crown, is also in the line of resistance. The
assumption of the location of these three points is made for the

reason, as is well known, that with a given system of forces a
polygonal frame may be found which will pass through any three

points in the ring.

The force polygon B, i, 2, 3, . . . , 10, A, Fig. 39, is then
drawn with the loadings on each ring segment found as already
explained. The horizontal forces are taken as represented by
the smaller values of h^, h^, h^, h^. Other force polygons wdth
larger values of these horizontal forces were tried and not found
satisfactory. Having constructed the force polygon and assumed
the trial pole P' , the radial lines are drawn from it as shown in
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Fig. 39. The polygonal frame shown in broken lines in Fig. 38

results from this trial pole. The frame practically passes through

b and c, but leaves the ring, passing outside of it, above the

joint VU. The point q in this frame is vertically above a. The
'

' three-point " method of finding the frame that will pass through

\ SCALE 1 =30000 LBS.

Fig. 39.

a, b, and c was then employed. The line ^6, Fig. 39, was drawn;
then P'D was drawn parallel to gb, Fig. 38 (not shown) ; after

which PD was drawn parallel to ab, until it intercepted the hori-

zontal line PQ, the line P'Q having previously been drawn par-

allel to qc (not shown). The final pole P was thus found. The
polygonal frame shown in full lines in the arch-ring was then
drawn with sides parallel to the lines radiating from P, all in

accordance with the usual methods for such graphic analysis.

That polygonal frame lies within the middle third of the arch-
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ring, although at three points it touches the limit of the middle

third. The arch, therefore, is stable.

This construction shows that, with the actual loading of the

ring, a line of resistance can be found lying within the middle

third; its stability under the conditions assumed is, therefore,

demonstrated. It does not follow that the line of resistance as

determined must necessarily exist, since there may be others

located still more favorably for stability. This indetermination

results from the fact already observed that the equations of

statical equilibrium are not sufficient in number to determine

the four unknown quantities (the two horizontal and the two

vertical reactions) ; but the process of demonstrating the stability

of the arch-ring is simple and sufficient for all ordinary purposes.

The line of resistance found, if not the true one, is so near to it

that no sensible waste of material is involved in employing it.

This indetermination has prompted some engineers and other

analysts to consider all arch-rings as elastic, thus obtaining other

equations of condition. While such a procedure may be per-

missible, it is scarcely necessary, and perhaps not advisable, in

view of the fact that many joints of cut-stone arches become

slightly open by very small cracks, resulting possibly from un-

equal settlement, quite harmless in themselves, having practi-

cally no effect upon the stability of the structure.

128. Intensities of Pressure in the Arch-ring. — It still re-

mains to ascertain whether the actual pressures of masonry in

the arch-ring are too high or not. The greatest single force

shown in the force polygon in Fig. 39 is the reaction R, having

a value by scale of 122,000 pounds, under the left end of the arch,

and it is supposed to act at the limit of the middle third of the

joint. Hence the average pressure on that joint will be

122 000 yc 2
'- =61,000 pounds per square foot.

This value may be taken as satisfactory for granite or the best

quality of limestone.

Again, it is necessary in bridges, as in some other structures,

to determine whether there is any liability of stones to slip on
each other. In order that motion shall take place the resultant
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forces acting on the surface of a stone joint must have an incli-

nation to that surface less than a value which is not well deter-

mined and which depends upon the condition of the surface of

the stone; it certainly must be less than 70°. The inclination

of every resultant force in Fig. 38 to the surface on which it acts

is considerably greater than that value and, hence, the stability

of friction is certainly secured.

129. Permissible Working Pressures.—The working values of

pressures permissible on cut-stone and brick or other masonry
must be inferred from the results of the actual tests of such

classes of masonry in connection with the results of experience

with structures in which the actual pressures existing are known.
It is safe to state that with such classes of material as are used

in the best grade of engineering structures these pressures will

generally be found not to exceed the following limits

:

Concrete, 20,000 to 40,000 pounds per square foot.

Cement rubble, same values.

Hard-burned brick, cement-mortar joints, 30,000 to 50,000

pounds per square foot.

Limestone ashlar, 40,000 to 60,000 pounds per square foot.

Granite ashlar, 50,000 to 70,000 pounds per square foot.

The masonry arch is at the same time the most graceful and
the most substantial and durable of all bridge structures, and it

is deservedly coming to be more and more used in modem bridge

practice. One of the greatest railroad corporations in the United

States has, for a number of years, been substituting, wherever

practicable, masonry arches for the iron and steel structures

replaced. The high degree of excellence already developed in

this country in the manufacture of the best grades of hydraulic

cement at reasonable prices, and the abundance of cut stone,

has brought this type of structure within the limits of a sound

economy where cost but a few years ago would have excluded it.

It is obviously limited in use to spans that are not very great

but yet considerably longer than any hitherto constructed.

130. Largest Arch Spans.^The longest arch span yet built

has been but recently completed in Germany at the city of

Luxemburg. This bridge has a span of 275.5 feet and a rise of

1 01. 8 feet. It is rather peculiarly built in two parallel parts
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separated 19.5 feet in the clear, the space between being spanned

by slabs or beams of combined concrete and steel. The arch-

ring is 4.75 feet thick at the crown and 7.18 feet thick at a point

53.14 feet vertically below the crown where it joins the spandrel

masonry. The roadway is about 52.5 feet wide and 144.5 ^eet

above the water in the Petrusse River, which it spans.

The longest arch in this country is known as the Cabin John
Bridge of 220 feet span and 57.5 feet rise. It is a segmental

arch, and is located a short distance from the city of Washington,

Cabin John Bridge, near Washington, D. C.

carrying the aqueduct for the water-supply of that city. These

lengths of span may be exceeded in good ordinary masonry con-

struction, but the high degree of strength and comparative

lightness which characterize the combination of steel and con-

crete will enable bridges to be built in considerably greater spans

than any yet contemplated in cut-stone masonry.



CHAPTER XIII.

131. Cantilever and Stiffened Suspension Bridges.—There are

two other types of bridges of later development which have, in

recent years, become prominent by remarkable examples of both

completed structure and design; they are known as the canti-

lever and stiffened suspension bridges. Both are adapted to

long spans, although the latter may be applied to much longer

spans than the former. A cantilever structure, with a main
span of 1800 feet between centres of piers, is now in process of

construction across the St. Lawrence River at Quebec, while the

well-known Forth Bridge across the Firth of Forth in Scotland

has a main span of 17 10 feet. The longest stiffened suspension

bridge yet constructed is the New York and Brooklyn Bridge,

with a river span of about 1595.5 ^^^"t between centres of towers,

but the stiffened suspension system has been shown by actual

design to be applicable to spans of more than 3200 feet, with

material now commercially produced.

132. Cantilever Bridges.—Figs. 41 and 42 exhibit in skeleton

outline two prominent cantilever designs for structures in this

(< U Panel.-orSO — 840:- -^ijo*-—12 PaneU or60'= 72(>i -jjj - -^''- f[?2j'
Total Length C. to C. of End Pins = 4120 Ft.

Fig. 41.

country. That shown in Fig. 41 was intended for a bridge across

the Hudson River between Sixtieth and Seventieth streets. New
York City. The main central opening has a span of 1800 feet,

and a length of 2000 feet between centres of towers. Fig. 42
shows the Monongahela River cantilever bridge,* now being

* This Ijridge was designed by and is being constructed under the direction of
Messrs. Boiler and Hodge, Consulting Engineers, New York City.

166
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?:

tdj::

built at Pittsburgh, Penn. Both fig- ^-^— -S"

ures exhibit the prominent features

of the cantilever system. The main

parts are the towers, at each end of

the centre span, which are 534.5 feet ^
high in the North River Bridge and -j^

135 feet high in the Monongahela '|

River structure, and the central main o

or river span with its simple non- g

continuous truss hung from the ends ^
of the cantilever brackets or arms ^

which flank it on both sides. These ^

cantilever arms are simply projecting ^
trusses continuous with the shore-

I

or anchor-arms. They rest -on the ^
piers at either end of the main span, ^
as a lever rests on its fulcrum. This ^
arrangement requires the shore ex- ^
tremities or the anchor-arms to be 3

anchored down by a heavy weight ^.

formed by the masonry piers at those 5^

points. Recapitulating and starting ^

from the two shore ends of the struc- ^

ture, there are the anchor-spans, con- °

tinuous at the towers, with the can- k.

tilever arms projecting outward to- 3

ward the centre of the main opening ^
and supporting at their ends the ^
suspended truss, which is a simple, ^

non-continuous one. It is thus evi- ^
dent that the cantilever bridge is a "

structure composed of continuous 5'

trusses with points of contraflexure c

permanently fixed at the ends of the ^
suspended span. The greatest bend-
ing moments are at the towers, and ^^

""f.^

the great depth at that point is given

for the purpose of affording adequate

? §

-s/f-
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resistance to those moments by the members of the structure.

The following statement shows some elements of the more
prominent cantilever bridges of this country and of the Forth

Bridge

:

Length of Cantilever

Name. Opening, Centre to Total Length,
Centre of Towers.

Pittsburgh 812 feet. 1504 feet.

Red Rock(Colo.) 660 " 990 "

Memphis (Tenn.) 790.48"- 2378.2

Forth 1710 " 5330 "

The arrangement of web members of cantilever structures is

designed to be such as will transfer the loads from the points of

application to the points of support in the shortest and most

direct paths. Both Figs. 41 and 42 show these general results

accomplished by an advantageous arrangement of web members.

It is interesting to note that the first cantilever bridge de-

signed and built in this country was constructed in 1871. This

structure was designed and erected by the late C. Shaler Smith,

a prominent civil engineer of his day.

133. Stiffened Suspension Bridges.—The stiffened suspension

bridge is a structure radically different in its main features and
its mode of transferring load to points of support from any here-

tofore considered, except arched ribs. When a load is supported

by a beam or truss, the stresses, either in the web members of

the truss or in the solid web of the beams, travel up and down
those members in zigzag directions with a relatively large amount
of metal required for that kind of transference. That metal

is represented by the weight of the web members of the truss and
of the solid web of the beam. Again, there are two sets of truss

members—the chords or flanges, one of which sustains tension

and the other an equal amount of compression. The greater

part of this metal must be so placed and used that the working
intensities of stress are comparatively small. This is particu-

larly the case in compression members of both chords and webs
which constitute the greater portion of the weight of the truss.

All compression members are known as long columns which sus-

tain not only direct compression but bending, and the amount
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of stress or load which they carry per square inch is relatively

small, decreasing as the length increases. For all these reasons

the amount of metal required for both beams and trusses is com-
paratively large. In suspension bridges, however, the condi-

tions requiring the employment of a relatively large amount of

metal with relatively small unit stresses are absent. The main
members of a suspension bridge are the cables and the stiffening

trusses, the latter being light in reference to the length of span.

The cables are subjected to tension only, which is the most eco-

nomical of all methods of using metal. A member in tension

tends to straighten itself, so that it is never subjected to bending

by the load which it carries. The opposite condition exists with
compression members. Again, grades of steel possessing the

highest ultimate resistance may be used in the manufacture of

cables. It is well known that w;ire is the strongest form in which
either wrought iron or steel can be manufactured. While the

ultimate tensile resistance of ordinary structural steel will seldom
rise above 70,000 pounds per square inch, steel wire, suitable to

be used in suspension-bridge cables, may be depended upon, at

the present time, to give an ultimate resistance of at least 180,000

pounds per square inch. The elastic limit of ordinary struc-

tural steel is but little above half its ultimate resistance, while

the elastic limit of the steel used in suspension-bridge cables is

probably not less than three fourths of its ultimate resistance.

It is seen, therefore, that the high resistance of steel wire makes
the steel cable of the suspension bridge a remarkably economical

application of metal to structural purposes.

The latest example of stiffened suspension-bridge is the new
East River Bridge reaching across the East River from Broadway
in Brooklyn to Delancey Street, New York City, now being built,

with a main span of 1600 feet between centres of towers. The
entire length of the metal structure is 7200 feet, and the eleva-

tion of the centres of cable at the tops of the towers is 333 feet

above mean high water.

Fig. 43 shows a view of this bridge. Its three principal divi-

sions are the cables, the stiffening trusses, and the towers. The

latter afford suitable points of support for the cables, which not

only extend over the river span, but are carried back to points
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on the land where they are securely attached to a neavy mass

of anchorage masonry. These anchorages must be sufficiently

heavy to prevent any load which may come upon the bridge

from moving them by the pull of the cables. It is usual to

Fig. 43.—New £-ast River Bridge.

make these masses so great that they are capable of resisting

fromi two to two and a half times the pull of the cables.

134. The Stiffening Truss.—The function of the stiffening

trusses is peculiar and imperatively essential to the proper action

of the whole system. If they are absent and a weight should

be placed upon the cable at any point, a deep sag at that point

would result. If a moving load should attempt to pass along a

roadway supported by a cable only, the latter would be greatly

distorted, and it would be impossible to use such a structure for

ordinary traffic. Some means must then be employed by which

the cable shall maintain essentially the same shape and position,

whatever may be the amount of loading. It can be readily

shown that if any perfectly flexible suspension-bridge cable carries

a load of uniform intensity over the span from one tower to the

other, the curve of the cable will be a parabola, with its vertex at

the lowest point. Furthermore, it can also be shown that if any

portion of the span be subjected to a uniform load, the corre-

sponding portion of the cable will also assume a parabolic
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curve. It is assumed in all ordinary suspension-bridge design

that the total weight of the structure, including the cables and
the suspension-rods which connect the stiffening trusses to the
cable, is uniformly distributed over the span, and that assump-
tion is essentially correct. So far as the weight of the structure

is concerned, therefore, the curve of the cable will always be
parabolic. It only remains, therefore, to devise such stiffening

trusses as will cause any moving load passing on or over the
bridge to be carried uniformly to the cables throughout the
entire span. This condition means that if any moving load
whatever covers any portion of the span, the corresponding pull

of the suspension-rods on the cables must be uniform from one
tower to the other, and that result can be practically accom-
plished by the proper design of stiffening trusses; it is the
complete function of those trusses to perform just that duty.

135. Location and Arrangement of Stiffening Trusses.—It has
been, and is at the present time to a considerable extent, an open
question as to the best location and arrangement of the stiffening

trusses. The more common method in structures built is that

illustrated by the New York and Brooklyn and the new East
River bridges. Those stiffening trusses are uniform in depth,

extending from one tower to the other, or into the land spans,

and connected with the cables by suspension-rods running from
the latter down to the lower chords of the trusses. It is obvious

that the floor along which the m.oving load is carried must have

considerable transverse stiffness, and hence it may appear advis-

able to place the stiffening trusses so that the floor may be carried

by them. On the other hand, some civil engineers maintain

that it is a better distribution of stiffening metal to place it where

the cables themselves may form members of the stiffening trusses,

with a view to greater economy of material.

Figs. 44, 45, and 46 illustrate some of the principal proposed

methods of constructing stiffening trusses in direct connection

with the cables. The structure shown in Fig. 44 illustrates the

skeleton design of the Point Bridge at Pittsburgh. The curved

member is a parabolic cable composed of eye-bars. This para-

bolic cable carries the entire weight of the structure and

moving load when uniformly distributed. If a single weight
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rests at the centre, the two straight members of the upper chord

may be assumed to carry it. If a single weight rests at any

other point of the span, it will be distributed by the bracing

between the straight and curved members of the stiffening truss.

Obviously the most unbalanced loading will occur when one half

of the span is covered with moving load. In that case the bow-

string stiffening truss in either half of Fig. 44 will make the re-

FlG. 46.

quired distribution and prevent the parabolic tension member
from changing its form.

The type of bracing shown in Fig. 45 possesses some advan-

tages of a peculiar nature. Each curved lower chord of the

stiffening truss corresponds to the position of the perfectly flexi-

ble cable with the moving load covering that half of the span

which belongs to the greatest sag of the cable. The two para-

bolic cables thus cross each other in a symmetrical manner at

the centre of the span. If the moving load covers the entire

span, the line of resistance or centre line of imaginary cable will

be the parabola, shown by the broken line midway along each

crescent stiffening truss. The diagonal bracing placed between

the cables is so distributed and applied as to maintain the posi-

tions of cables under all conditions of loading.

The mode of constructing the stiffening truss between two
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cables, shown in Fig. 46, is that adopted by Mr. G. Lindenthal
in his design for a proposed stiffened suspension bridge across

the Hudson River with a span of about 3000 feet. The two
cables are parabolic in curvature and may be either concentric

or parallel. This system of stiffening bracing possesses some
advantages of uniformity and is well placed to secure efficient

results. The same system has been used in suspension bridges

of short span by Mr. Lindenthal at both St. Louis and Pittsburgh.

The stiffening bracing produces practically a continuous stiffening

truss from one tower to the other, whereas the systems shown
in Figs. 44 and 45 involve practically a joint at the centre of the
span.

In all these three types of vertical stiffness the floor is designed

to meet only the exigencies of local loading, being connected

with the stiffening truss above by suspension bars or rods, prefer-

ably of stiff section.

When stiffening trusses are placed along the line of the floor,

as in the case of the two East River bridges, to which reference

has already been made, those trusses need not necessarily be
of uniform depth, and they may be continuous from tower to

tower or jointed at the centre, like those of the New York and
Brooklyn suspension bridge. This centre joint detracts a little

from the stiffness of the structure, but in a proper design this

is not serious.

136. Division of Load between Cables and Stiffening Truss.

—

In a case where continuous stiffening trusses are employed it is

obvious that they may carry some portion of the moving load

as ordinary trusses. The portion so carried will be that which
is required to make the deflection of the stiffening truss equal to

that of the cable added to the stretch of the suspension-rods.

In the old theory of the stiffening truss constructed along the

floor of the bridge this effect was ignored, and the computations

for the stresses in those trusses were made by the aid of equations

of statical equilibrium only. That assumption, that the cable

carried the entire load, was necessary to remove the ambiguity

which would otherwise exist. In modern suspension-bridge

design those trusses may be assumed continuous from tower to

tower with their ends anchored at the towers, or they may be
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designed to be carried continuously through portions of the land

spans and held at their extremities by struts reaching down to

anchorages, so that those ends may never rise nor fall, but move
horizontally if required. If there are no pin-joints in the trusses

at the centre and ends of the main span, equations of statical

equilibrium are not sufficient to enable the reactions under the

trusses and the horizontal component of cable tension to be found.

One of the best methods of procedure for such cases is that

of least work, in which the horizontal component of cable ten-

sion is so found that the total work performed in the elastic

deflection of the stiffening trusses, suspension-rods, cables, and

towers is a minimum. After having found this horizontal com-

ponent of the cable tension and the reactions under the stiffening

trusses, the stresses in all the members of the entire structure

can be at once determined. It is obvious that the stiffening

truss and the cables must deflect together. It is equally evident

that the deeper the stiffening trusses are the more load will be

required to deflect them to any given amount, and hence that

the deeper they are the more load they will carry independently

of the cable. It is desirable to throw as much of the duty of

carrying loads upon the cables as possible. It therefore follows

that the stiffening trusses should be made as shallow as the proper

discharge of their stiffening duties will permit.

137. Stresses in Cables and Moments and Shears in Trusses.—
The necessary limits of this discussion will not permit even the

simplest analyses to be given. It is evident, however, that the

greatest cable stresses will exist at the tops of the towers, and

that if the horizontal component of cable tension be found by
any proper method, the stress at any other point will be equal

to that horizontal component multiplied by the secant of cable

inclination to a horizontal line, it being supposed that the sus-

penders are found in a vertical plane.

If the stiffening trusses are jointed at the centre of the main
span, as well as at the ends, the simple equations of statical

equilibrium are sufficient in number to make all computations,

for the reason that the centre pin-joint gives the additional con-

dition that, whatever may be the amount or distribution of

loading, the centre moment must be zero. If / is the length of
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main or centre span and p the moving load per linear foot of span,

and if the stiffening trusses run from tower to tower, the follow-

ing equations will give their greatest moments and shears both
by the old and new theory of the stiffening truss.

/ = load per lin. ft., /=length of span in ft.,

Old theory. Isew theory.

Max. moment.. . . 71/ = 0.01856^/^ M = o.oi6s2pP] no centre

Max. shear 5= ^pl S = l-pl ) hinge.

With centre hinge ill -=0.01883/?/^ and S = lpl

The details of the theory of stiffening trusses for suspension

bridges have been well developed during the past few years and
are fully exhibited in modern engineering literature. The long

spans requiring stiffened suspension bridges are usually found
over navigable streams, and hence those bridges must be placed

at comparatively high elevations. This is illustrated by the

clear height of 135 feet required under the East River suspension-

bridge structures already completed and in progress. Further-

more, the heights of towers above the lowest points of the cables

usually run from one eighth to one twelfth of the span. These
features expose the entire structure to comparatively high wind
pressures, which must be carefully provided against. This is

done by the requisite lateral bracing between the stiffening

trusses and by what is called the cradling of the cables. The
latter expression simply means that the cables as they are built

are swung out of a vertical plane and toward the axis of the

structure, being held in that position by suitable details. The
cables on opposite sides of the bridge are thus moved in toward

each other so as to produce increased stability against lateral

movement. Occasionally horizontal cables are stretched be-

tween the towers in parabolic curves in order to resist horizontal

pressures, just as the main cables carry vertical loads. This

matter of stability against lateral wind pressures requires and

receives the same degree of careful consideration in design as

that accorded to the effects of vertical loading. The same gen-

eral observation applies also to the design of the towers.

138. Thermal Stresses and Moments in Stiffened Suspension

Bridges.—All material used in engineering structures expands
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and contracts with rising and falling temperatures to such an

extent that the resulting motions must be provided for in struc-

tures of considerable magnitude. In ordinary truss-bridges one

end is supported upon rollers, so that as the span changes its

length the truss ends move the required amount upon the rollers.

In the case of stiffened suspension bridges, however, the ends of

the cables at the anchorages are rigidly fixed, so that any adjust-

ment required by change of temperature must be consistent with

the change of length of cable between the anchorages. The

backstays, which are those portions of the cables extending from

the anchorages to the tops of the towers, expand and contract

precisely as do the portions of the cable between the tops of the

towers. As the cables lengthen, therefore, the sag or rise at the

centre of the main span will be due to the change in the entire

length of cable from anchorage to anchorage. In order to meet

this condition it is usual to support the cables at the tops of the

towers on seats called saddles which rest upon rollers, so as to

afford any motion that may be required. Designs have been

made in which the cables are fixed to the tops of steel towers. In

such cases changes of temperature would subject the towers to

considerable bending which would be provided for in the design.

The rise and fall at the centres of long spans of stiffened sus-

pension bridges is considerable; indeed, for a variation of 120°

Fahr. the centre of the New York and Brooklyn Bridge changes

its elevation by 4.6 feet if the saddles are free to move, as intended.

In the case of a stiffened suspension bridge designed to cross the

North River at New York City with a main span of 3200 feet

a variation of 120° Fahr. in temperature would produce a change

of elevation of the centre of the span of 6.36 feet. Such thermal

motions in the structure obviously will produce stresses of con-

siderable magnitude in various parts of the stiffening trusses, all

of which are invariably recognized and provided for in good

design.

139. Formation of the Cables.—At the present time suspen-

sion-bridge cables are made by grouping together in one cylindrical

mass a large number of so-called strands or individual small cables,

each composed of a large number of parallel wires about one

sixth of an inch in diameter. The four cables of the New York
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and Brooklyn Bridge are each composed of 19 strands, each of
the latter containing 332 parallel wires, making a total of 6308
wires, the cables themselves being 15^ inches in diameter. The
wire is No. 7 gauge, i.e., 0.18 inch in diameter. In the new East
River Bridge each of the four cables is 18^ inches in diameter
and contains 37 strands, each strand being composed of 208
wires all laid parallel to each other, or a total of 7696 wires. The
size of the wire is No. 6 (Roebling) gauge, i.e., 0.192 inch in diam-
eter. These strands are formed by laying wire by wire, each in

its proper place. The strands are then bound together into a
single cable, around which is tightly wound a sheathing or casing
of smaller wire, 0.134 inch in diameter for the New York and
Brooklyn Bridge. The tightness of this binding wire insures the
unity of the whole cable, each wire having been placed in its origi-

nal position so as to take a tension equal to that of each of the
other wires. The suspension-rods are usually of wire cables and
are attached by suitable details to the lower chords of the stiffen-

ing truss, also by specially designed clamps to the cable. The
stiffening trusses are usually built with all riveted joints, so as to
secure the greatest possible stiffness from end to end. The
stiffened suspension bridge has been shown by experience, as
well as by theory, to be well adapted to carry railroad traffic

over long spans.

140. Economical Limits of Spans.—In the past, suspension
bridges have, in a number of cases, been built for comparatively
short spans, but it is well recognized among engineers that their

economical use must be found for spans of comparatively great
length. While definite lower limits cannot now be assigned to

such spans, it is probable that with present materials of con-
struction and with available shop and mill capacities the ordi-

nary truss-bridge may be economically used up to spans approxi-
mately 700 to 800 feet, and that above that limit the cantilever

system is economically applicable to lengths of span not yet
determined but probably between 1600 and 2000 feet. The
special field of economical employment of the long-span stiffened

suspension bridge will be found at the upper limit of the canti-

lever system. So far as present investigations indicate, the
stiffened suspension type of structure may be employed to
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advantage from about 1800 feet up to the maximum practicable

length of span not yet assignable, but perhaps in the vicinity of

4000 feet. Obviously such limits are approximate only and

may be pushed upward by further improvements in the produc-

tion of material and in the enlargement of both shop and mill

capacity.




